
phpGACL
Generic Access Control List

Mike Benoit <ipso@snappymail.ca>
James Russell <james-phpgacl@ps2-pro.com>
Karsten Dambekalns <k.dambekalns@fishfarm.de>

Copyright © 2002,2003, Mike Benoit
Copyright © 2003, James Russell
Copyright © 2003, Karsten Dambekalns

Document Version: 42

Last Updated: 5/20/03 - 18:55:08

Table of Contents
Table of Contents...2

About..5

What is it?...5

Where can I get it?...5

What do I need to run it?...5

Who is responsible for it?..5

Introduction..6

Understanding Access Control..6

Who/Where..6

Who/Where..7

Defining access control with phpGACL...7

Fine-grain access control...8

Multi-level Groups...9

How does phpGACL determine permissions?...9

Adding groups..11

Adding people..11

Resolving conflicts..12

Naming Access Objects...13

Adding Sections...14

Multiple Purposes..15

Access eXtension Objects...15

Installation..18

Basic setup...18

Advanced setup..20

Using phpGACL in your application..21

Basic usage...21

Advanced usage...21

Using the ACL admin utility...22

API Reference..23

ACL..23

add_acl()...23

edit_acl()..23

del_acl()..24

Groups ...24

get_group_id()..24

get_group_parent_id()...24

add_group()..24

get_group_objects()...25

add_group_object()..25

del_group_object()...25

edit_group()..26

del_group()...26

Access Objects (ARO/ACO/AXO)...26

get_object()..26

get_object_data()...27

get_object_id()...27

get_object_section_value()...27

add_object()...27

edit_object()...28

del_object()..28

Access Object Sections..29

get_object_section_section_id()...29

add_object_section..29

edit_object_section()...30

del_object_section()...30

FAQ..31

About

What is it?
phpGACL is an set of functions that allows you to apply access control to arbitrary objects
(web pages, databases, etc) by other arbitrary objects (users, remote hosts, etc).

It offers fine-grained access control with simple management, and is very fast.

It is written in PHP (hence phpGACL), a popular scripting language that is commonly used to
dynamically create web pages. The GACL part of phpGACL stands for Generic Access
Control List.

Where can I get it?
phpGACL is hosted by sourceforge.net at http://phpGACL.sourceforge.net/

What do I need to run it?
phpGACL requires a relational database to store the access control information. It accesses
this database via an abstract wrapper called ADOdb. This is compatible with databases such
as PostgreSQL, MySQL and Oracle.

phpGACL is written in the PHP scripting language. It requires PHP 4.2 and above.

Access Control List administration is performed by a web interface, and therefore it is
necessary to have a web server with PHP support, such as Apache.

Who is responsible for it?
Mike Benoit <ipso@snappymail.ca> is the author and project manager.

James Russell <james-phpgacl@ps2-pro.com> and Karsten Dambekalns
<k.dambekalns@fishfarm.de> did the documentation.

Introduction

Understanding Access Control
Han is captain of the Millennium Falcon and Chewie is his second officer. They've taken on
board some passengers: Luke, Obi-wan, R2D2 and C3PO. Han needs to define access
restrictions for various rooms of the ship: The Cockpit, Lounge, Engines and the external
Guns.

Han says: "Me and Chewie should have access to everywhere, but after a particularly messy
hyperdrive repair, I forbid Chewie from going near the Engine Room ever again. Passengers
are confined to the Passenger's Lounge."

Let's assume from now on that access is Boolean. That is, the result of looking up a person's
access to a room is either ALLOW or DENY. There is no middle ground.

If we mapped this statement into an access matrix showing who has access to where, it
would look something like this (O means ALLOW, X means DENY):

Who/Where Cockpit Lounge Guns Engines

Han O O O O

Chewie O O O X

Obi-wan X O X X

Luke X O X X

R2-D2 X O X X

C3PO X O X X

The columns list the rooms that Han wants to restrict access to, and the rows list the people
that might request access to those rooms. More generally, the "rooms" are "things to control
access on". We call these Access Control Objects (ACOs). The "people" are "things
requesting access". We call these Access Request Objects (AROs). The people request
access to the rooms, or in our terminology, AROs request access to the ACOs.

There is a third type of Object, the Access eXtention Object (AXO) that we'll discuss later.
These objects share many attributes and are collectively referred to as Access Objects.

Managing access using an access matrix like the one above has advantages and
disadvantages.

Pros:

• It's very fine-grained. It's possible to control access for an individual person if
necessary.

• It's easy to see who has access to what. The answer is stored in the intersection of
the person and the room.

Cons:

• It's difficult to manage on a large scale. 6 passengers and 4 places is fairly simple,
but what if there were thousands of passengers and hundreds of places, and you
need to restrict access to large groups of them at once, but still retain enough fine-
grained control to manage access for an individual? That would mean a lot of fiddly

and lengthy adjustment to the matrix, and it's a difficult task to verify that the final
matrix is correct.

• It's hard to summarize or visualize. The above example is fairly simple to summarize
in a few sentences (as Han did above), but what if the matrix looked like this?

Who/Where Cockpit Lounge Guns Engines

Han O O O O

Chewie O X O X

Obi-wan X O X X

Luke O O O X

R2-D2 X O X O

C3PO O O X O

This matrix is not so obvious to summarize, and it's not clear to the reader why those
access decisions might have been made in the first place.

Defining access control with phpGACL
It seems that for large or complex situations, this 'access matrix' approach is clearly
unsuitable. We need a better system that maintains the advantages (fine-grain control and a
clear idea of who has access to what) but removes the disadvantages (difficult to summarize,
and difficult to manage large groups of people at once). One solution is phpGACL.

phpGACL doesn't describe access from the 'bottom-up' like the Access Matrix above.
Instead, it describes it 'top-down', like the textual description of Han's access policy. This is a
very flexible system that allows you to manage access in large groups, it neatly summarizes
the access policy, and it's easy to see who has access to what.

An ARO tree defines a hierarchy of Groups and AROs (things that request access). This is
very similar to a tree view of folders and files. The 'folders' are the Groups and the 'files' are
AROs.

Let's make an ACL tree for the people on Han's ship. First we define some categories for the
people. It's clear that Han and Chewie run the ship, and the rest of them are just passengers:

Millennium Falcon Passengers Group���
Crew Group�

���
Han ARO�

 � � Chewie ARO
� � Passengers Group

���
Obi-wan ARO

���
Luke ARO

���
R2D2 ARO

 � � C3PO ARO

This tree by itself doesn't specify any access policy; it just shows how we're grouping the
people who might request access (AROs).

We apply access restrictions by assigning instructions about a particular room (ACO) to
Groups or AROs in the tree. Han says: "By default, no-one should be allowed access to any
room on the Millennium Falcon. But the Crew should have access to every room. The
Passengers should only have access to the Lounge."

Millennium Falcon Passengers���
Crew [ALLOW: ALL]�

���
Han�

 � � Chewie
� � Passengers [ALLOW: Lounge]

���
Obi-wan

���
Luke

���
R2D2

 � � C3PO
To interpret this ARO tree, we start from the top and work our way down.

Firstly, the default policy is always to deny access. Permissions have been overridden for the
"Crew", so they have access to everywhere ("ALL" is a synonym for all rooms: "Cockpit,
Lounge, Guns, Engines"). The "Passengers" have access only to the Lounge.

This way of describing the access policy is much clearer than the access matrix. You can
easily see who has access to what, and it's easier to determine why they've got access (it
seems obvious that Han and Chewie would have access to everything, since they're grouped
under "Crew").

To summarize:

• Access Control Objects (ACOs) are the things we want to control access to (e.g.
web pages, databases, rooms, etc).

• Access Request Objects (AROs) are the things that request access (e.g. people,
remote computers, etc)

• ARO trees define a hierarchy of Groups and AROs. Groups can contain other
Groups and AROs.

• The default 'catch-all' policy for the ARO tree is always "DENY ALL".

• To assign access policy, work your way down the tree, explicitly assigning
permissions to Groups and AROs for each ACO as the need arises.

Fine-grain access control
Oops! What about Chewie? By grouping him in "Crew", Han has indirectly given him access
to the Engines! He doesn't want that after what Chewie recently did to the hyperdrive, so he
adds a rule to disallow this:

Millennium Falcon Passengers���
Crew [ALLOW: ALL]�

���
Han�

 � � Chewie [DENY: Engines]
� � Passengers [ALLOW: Lounge]

���
Obi-wan

���
Luke

���
R2D2

 � � C3PO
This is an example of the way you can control access policy in a fine-grained manner. It is
not necessary to move Chewie to another Group; we simply over-ride the access policy at a
lower level.

Another example of fine-grain control happens when the Empire attacks; Han needs to let
Luke man the guns, and let R2D2 repair the hyperdrive in the Engine room. He can do this
by over-riding the general permissions granted by their status as a "Passenger":

Millennium Falcon Passengers���
Crew [ALLOW: ALL]�

���
Han�

 � � Chewie [DENY: Engines]
� � Passengers [ALLOW: Lounge]

���
Obi-wan

���
Luke [ALLOW: Guns]

���
R2D2 [ALLOW: Engines]

 � � C3PO

Multi-level Groups
Groups can be extended to any level in the ARO tree. For example, you could add a Group
"Jedi" to "Passengers". Most passengers would be categorized under "Passengers", but
Luke and Obi-wan would be under "Jedi" and therefore might be extended extra privileges
(like access to the Cockpit):

Millennium Falcon Passengers���
Crew [ALLOW: ALL]�

���
Han�

 � � Chewie [DENY: Engines]
� � Passengers [ALLOW: Lounge]

���
Jedi [ALLOW: Cockpit]

�

���
Obi-wan

�
 � � Luke [ALLOW: Guns]

���
R2D2 [ALLOW: Engines]

 � � C3PO

How does phpGACL determine permissions?
When the ship's computer (running phpGACL of course) checks access, the only question it
can ask itself is "Does person X have access to room Y?" In phpGACL terms, this is
rephrased as "Does ARO 'X' have access to ACO 'Y'?"

phpGACL determines whether a specific person has access to a specific room by working
from the top of the ARO tree towards the specified person, noting explicit access controls for
that place along the way. When it reaches that person, it uses the last explicit access control
it encountered as the result to return. In this way, you can define access controls for groups
of people, but over-ride them further down the tree if you need to.

Example 1: We ask: "Does Luke have access to the Lounge?".

• Set the default result, "DENY".

• Work out a path to Luke:

Millennium Falcon Passengers � Passengers � Jedi � Luke

• Start at the top of the tree and move towards Luke: The "Millennium Falcon
Passengers" node doesn't say anything about any room, so do nothing here.

• Move on to "Passengers", which explicitly says that "Passengers" have Lounge
access, so change the internal result to "ALLOW".

• Move to the "Jedi" node, which doesn't mention the Lounge at all.

• Finally move to Luke's node, and again there's nothing there about the Lounge.

• There's nowhere left to go, so the result returned is the current value of the internal
result: "ALLOW"

Example 2: We ask: "Does Chewie have access to the Engines?"

• Set the default result, "DENY".

• Work out a path to Chewie:

Millennium Falcon Passengers � Crew � Chewie

• Start at the top of the tree and move towards Chewie. The "Millennium Falcon
Passengers" node doesn't say anything about anywhere, so do nothing here.

• Move on to "Crew", which explicitly says that "Crew" have Engine access, so change
the internal result to "ALLOW".

• Move to Chewie's node, and there's an explicit rule saying that he doesn't have
access to the Engines, so change the internal result to "DENY".

• There's nowhere left to go, so the result returned is the current value of the internal
result: "DENY"

As you can see from the examples, if a Group doesn't explicitly specify a permission for a
room, then that Group inherits the access restrictions of its parent for that room. If the root
node ("Millennium Falcon Passengers") doesn't specify a permission, it inherits it from the
default setting ("DENY ALL" in the above examples).

This implies a couple of interesting points about the ARO tree:

• The ARO tree always shows the full list of the AROs. It would not make sense to ask
"Does Jabba have access to the Cockpit?" because Jabba has not been defined in
this system. However, phpGACL does not check to see if AROs or ACOs exist
before performing the check, so if this question was actually asked then the result
would be the default "DENY".

• The ARO tree may not display some defined ACOs, and relies on the default setting
to define access policy. For example, say Han defined a "Bathroom" ACO. Any
question like "Does Luke have access to the Bathroom?" would have the answer
"DENY", because the default is "DENY" and nowhere in the ARO tree does it ever
explicitly mention the Bathroom. Keep in mind when examining the ARO tree that
some ACOs may not be visible.

Note: When asking phpGACL questions about access to an ACO, it is not possible to use
Groups as AROs (even though it might 'seem' right). For example, it is impossible to answer
the question "Do Passengers have access to Guns?" The complete answer is not a Boolean
"ALLOW" or "DENY", but the more complex "Luke and Obi-wan can but R2D2 and C3PO
cannot." phpGACL is not designed to return that kind of answer.

Adding groups
Han feels this ACL is starting to look a little complicated. There are so many exceptions!
Perhaps he should make another group, "Engineers", containing the people who are allowed
access to the Engines and Guns. That group should contain Han and R2D2 since they're
both capable of repairing the engines and guns. This means Han can remove some of those
messy exceptions-to-the-rules, and that has the benefit of making the description clearer:

Default: DENY ALL
Millennium Falcon Passengers���
Crew [ALLOW: ALL]�

���
Han�

 � � Chewie [DENY: Engines]���
Passengers [ALLOW: Lounge]�

���
Jedi [ALLOW: Cockpit]�

�

���
Obi-wan�

�
 � � Luke [ALLOW: Guns] �

���
R2D2�

 � � C3PO
� � Engineers [ALLOW: Engines, Guns]

���
Han

 � � R2D2
We can read this as "By default, no-one has access to anywhere. Crew have access to
everywhere (except Chewie, who has no access to the Engines). Passengers only have
access to the Lounge, except Jedi who also have access to the Cockpit. Luke has access to
the Guns too. Engineers are allowed access to the Engines and Guns."

Most importantly, we can see that Han and R2D2 are now in two places in the ACL. It is not
necessary for them to be uniquely categorized at all. This defines the policy more clearly to
the reader: "Ahh, Han and R2D2 have access to the Engines and Guns because they're
engineers."

Adding people
Han goes to Cloud City to pick up Lando and get some repairs. Lando's the Millennium
Falcon's previous owner, so Han reckons he qualifies as Crew. Lando also offers the
services of his top engineer, Hontook, for help with repairing the ship while they're in dock.

Default: DENY ALL
Millennium Falcon Passengers���
Crew [ALLOW: ALL]�

���
Han�

���
Chewie [DENY: Engines]�

 � � Lando���
Passengers [ALLOW: Lounge]�

���
Jedi [ALLOW: Cockpit]�

�

���
Obi-wan�

�
 � � Luke [ALLOW: Guns] �

���
R2D2�

 � � C3PO
� � Engineers [ALLOW: Engines, Guns]

���
Han

���
R2D2

 � � Hontook

This shows how easy it is to grant new people access. If we used the original matrix scheme,
we'd have to set permissions for each room for both Lando and Hontook. Instead, we simply
add them to their appropriate groups and their access is implicitly and easily defined.

Resolving conflicts
What happens if we add Chewie to the list of Engineers?

Default: DENY ALL
Millennium Falcon Passengers���
Crew [ALLOW: ALL]�

���
Han�

���
Chewie [DENY: Engines]�

 � � Lando���
Passengers [ALLOW: Lounge]�

���
Jedi [ALLOW: Cockpit]�

�

���
Obi-wan�

�
 � � Luke [ALLOW: Guns] �

���
R2D2�

 � � C3PO
� � Engineers [ALLOW: Engines, Guns]

���
Han

���
R2D2

���
Hontook

 � � Chewie
This makes Chewie's access to the Engines ambiguous, because now there are two paths
from the root of the tree to Chewie. If the ship's computer follows one path (along the "Crew"
branch), the result is "DENY access to Engines." If it follows the other path (along the
"Engineers" branch) then the result is "ALLOW access to Engines". So, is he allowed or
denied?

phpGACL will warn you if you add or edit an multiply-grouped ARO in such a way that the
ARO's access to an arbitrary ACO would be ambiguous. But it is up to you to resolve the
conflict.

If we now asked phpGACL the question "Does Chewie have access to Engines?" the result
returned is the result given by the last ACL entry to be modified (this is phpGACL's policy). In
this case the result is ALLOW, because the "ALLOW: Engines, Guns" directive assigned to
the Engineers Group is more recent than the "DENY: Engines" directive assigned to
Chewie's Group.

When ambiguous access entries exist in the ACL, the ACL is said to be inconsistent.
Inconsistent ACLs can be very dangerous, and you may unwittingly provide access to
inappropriate people if you allow your ACL to remain in this state. When phpGACL warns
you that the ACL is inconsistent, it is best to resolve the conflicts as soon as possible to
regain consistency.

To resolve the conflict in this case, we could either:

• Remove the "DENY: Engines" directive from Chewie's entry under the Crew Group.

• Add a "DENY: Engines" directive to Chewie's entry under the Engineers Group.

• Remove Chewie from the Engineers Group, since Han doesn't think him a worthy
Engineer anyway.

Han chooses option 3, and removes Chewie from the Engineers list.

Naming Access Objects
phpGACL uniquely identifies each Access Object (AROs, AXOs and ACOs) with a two-
keyword combination and it's Access Object type.

The tuple "(Access Object type, Section, Value)" uniquely identifies any Access Object.

The first element of the tuple is the type of Access Object (ARO, AXO or ACO).

The second element of the tuple, called the Section, is a user-defined string which names
the general category of the Access Object. Multiple Access Objects can share the same
Section name. The Section name should be short but descriptive. It's used in the user
interface in selection boxes, so try not to make it too long.

Sections are stored in a flat namespace; they are not nestable like Groups. Sections have
nothing to do with Groups or the ARO/AXO trees - they are purely a mechanism for helping
to maintain large numbers of Access Objects.

The third element of the tuple is a user-defined name for the Access Object, and is called the
Value. A Value cannot contain spaces (however, a Section can).

Both Section and Values are case sensitive.

Aside: It is commonly asked why strings are used to identify Access Objects, rather
than integers which ostensibly seem faster. The answer is for legibility. It is much
easier to understand:

acl_check('system', 'login', 'users', 'john_doe');
than:

acl_check(10, 21004, 15, 20304);

Since it is often obvious from the context which type of Access Object we are referring to, the
interface for phpGACL (and this documentation) drops the Access Object type and uses the
format "Section > Value" when displaying the name of an Access Object. However, the API
requires an Access Object's "Section" and "Value" to be specified in separate function
arguments (the Access Object type is usually implicit in the argument description).

Example ACO "Section > Values":

• "Floors > 1st"

• "Floors > 2nd"

• "Rooms > Engines"

Example ARO "Section > Values":

• "People > John_Smith”

• “People > Cathy_Jones”

• “Hosts > sandbox.something.com”

Example API usage:

• acl_check (aro_section, aro_value, aco_section, aco_value);

• acl_check ('People', 'John_Smith', 'Floors', '2nd');

Valid Naming Restrictions Examples:

• "ACO -Frob > Flerg", "ARO - Frob > Flerg" (The Section and Value are the same in
both, but this is fine as namespaces are separate across Access Object types)

• "ACO -Frob > Flerg", "ACO - Frob > Queegle" (The Access Object type and Section
are the same, but this is fine as the Values are different)

• "AXO - Frob Hrung > Flerg" (Sections can contain spaces)

Invalid Naming Restrictions Examples:

• "ACO - Frob > Flerg", "ACO - Frob > Flerg" ("Access Object type - Section > Value"
must be unique)

• "ACO - Frob > Flerg Habit" (Values cannot contain spaces)

Adding Sections
Before you can add a new Access Object, its Section must be defined. To add a new section,
use the add_object_section() function.

add_object_section (

string NAME, A short description of what this Section is for. (e.g. "Levels in
building").

string VALUE, The name of the Section (e.g. "Floor").

int ORDER, An arbitrary value which affects the order this Section appears in the
UI.

bool HIDDEN, Whether this should appear in the UI or not (TRUE means
that is will be hidden).

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo")

Han creates 3 Sections for the AROs. "Humans", "Aliens" and "Androids". Let's list the AROs
with their full names

Millennium Falcon Passengers���
Crew [ALLOW: ALL]�

���
"Humans > Han"�

���
"Aliens > Chewie" [DENY: Engines]�

 � � "Humans > Lando"���
Passengers [ALLOW: Lounge]�

���
Jedi [ALLOW: Cockpit]�

�

���
"Humans > Obi-wan"�

�
 � � "Humans > Luke" [ALLOW: Guns] �

���
"Androids > R2D2"�

 � � "Androids > C3PO"
� � Engineers [ALLOW: Engines, Guns]

���
"Humans > Han"

���
"Androids > R2D2"

 � � "Aliens > Hontook"

Sections are just a way of categorizing Access Objects, to make the user interface more
usable, and the code for acl_check() more readable. They do not affect the way phpGACL
determines access to an object. They cannot be nested (so it would not be able to create a
"Males" sub-Section under "Humans" for example; you'd have to create a Section called
"Humans-Male" or similar)

Multiple Purposes
You may need to use phpGACL for multiple independent purposes. For example, you may
need to restrict user access to web pages, and also remote host access to your server. The
two tasks are not related.

phpGACL can handle this in three different ways.

• It can use an alternative database to store the access tables.

• It can use the same database but with differently named access tables. (this feature
is not implemented yet).

• You can store the Access Objects for both purposes in the same tables, and
carefully manage your list so that they don't conflict.

To implement Option 1 (and Option 2 when it becomes available), use the $gacl_options
array when creating a new phpGACL class. This allows you to specify the database and
table name prefixes to use:

$gacl_options = array(
'db_table_prefix' => 'gacl_',
'db_type' => 'mysql',
'db_host' => 'host1',
'db_user' => 'user',
'db_password' => 'passwd',
'db_name' => 'gacl');

$gacl_host1 = new gacl($gacl_options);

To implement Option 3, you must be careful, since phpGACL doesn't know the relationship
between your different tasks, and it will be possible to make meaningless Access Policy
Directives.

For example, say Han wanted to restrict access to other ships contacting his ship's
computer, in addition to restricting access to the different rooms. To do this, he might add
"Luke's X-Wing Fighter" as a remote ship ARO (in addition to other ships and an ACO for the
ship's computer). Because all AROs are in the same ARO tree, it would be possible to create
an APD like "Ships > Luke's X-Wing Fighter" [ALLOW: "Rooms > Lounge"], which would be
totally meaningless! To help reduce mistakes like this, good Section naming can make it
clearer what Access Objects are for which tasks. It should be obvious to any administrator
that it's meaningless to assign a Ship permission to use a Room.

Access eXtension Objects
Access eXtension Objects (AXOs) can add a 3rd dimension to the permissions that can be
configured in phpGACL. We've seen how phpGACL allows you to combine an ARO and an
ACO (2 dimensions) to create an Access Policy Directive. This is great for simple permission
requests like:

Luke (ARO) requests access to "Guns" (ACO)

If that's all you need, that's fine - AXOs are totally optional.

But because all ACOs are considered equal, it makes it difficult to manage if there are many
ACOs. If this is the case, we can change the way we look at Access Objects to manage it
more easily.

AXOs are identical to AROs in many respects. There is an AXO tree (separate from the ARO
tree), with it's own Groups and AXOs. When dealing with AXOs, consider an AXO to take the
old role of the ACO (i.e. "things to control access on"), and change the view of ACOs from
"things to control access on" to "actions that are requested".

ARO and ACO-only View:

• AROs: Things requesting access

• ACOs: Things to control access on

ARO, ACO and AXO View:

• AROs: Things requesting access

• ACOs: Actions that are requested

• AXOs: Things to control access on

Example:

A website manager is trying to manage access to projects on the website. The ARO tree
consists of all the users:

Website���
Administrators�

���
Alice�

 � � Carol
� � Users

���
Bob

 � � Alan
The projects are organized by Operating System into categories in the AXO tree:

Projects���
Linux�

���
SpamFilter2�

 � � AutoLinusWorshipper
� � Windows

���
PaperclipKiller

 � � PopupStopper
The actions that can be taken with each project are "View" and "Edit". These are the ACOs.

Now we want Bob to have "View" access to all the Linux projects, so it's possible to add an
ADP that links Bob's ARO to the View ACO and the Linux AXO, and thus we can ask the
question:

Bob (ARO) requests access to "View" (ACO) the project(s) called "Linux" (AXO)

Keep in mind AXO's are optional, if you don't specify an AXO when calling acl_check() and a
matching ADP exists with no AXO, it will be allowed. However if only APDs exist with AXO's,
and you call acl_check() without an AXO, it will fail.

So basically as soon as you specify an AXO when calling acl_check(), acl_check() will only
search ACLs containing AXO's. If no AXO is specified, only ACLs without AXOs are
searched. This in theory (I haven't benchmarked) gives us a slight performance increase as
well.

Installation

Basic setup
1. Untar the distribution .tar.gz file into the root or a subdirectory of your web site. You might

want to rename it to something more suitable.

2. Edit phpgacl/gacl.class.php using your favourite editor and set the db_type, db_host,
db_user, db_password, and db_name you will be using.

Now edit phpgacl/admin/gacl_admin.inc.php to hold the same information. This file is
used by the setup script as well as the ACL admin backend.

The reason for two files holding that (same) information, is that the core ACL library
gacl.class.php is much smaller than the full-fledged API class, and there is no need
to include all the code when you just want to call acl_check().

3. Create the database you specified in db_name on the server.

4. Surf to http://yoursite.net/phpgacl/setup.php. The required tables will be installed based
on your choice of database. Don't be afraid of the truckload of output, if all goes well you
will see only success messages.

5. Now follow the last advice shown on that screen and create the
phpgacl/admin/smarty/templates_c directory. It must be writable by the user the
webserver runs as. If you don't do this, you will not be able to use the CAL admin!

6. Click the link at the bottom of the successful setup page or surf to:
http://yoursite.net/phpgacl/admin/acl_admin.php

Advanced setup
Reusing an already existing ADOdb installation

If you already have ADOdb installed you can get phpGACL to use this copy of ADOdb.

1. Edit phpgacl/gacl.class.php so that ADODB_DIR reflects the location of the ADOdb library
in your path.

2. Rename the phpgacl/adodb folder to something else like adodb_x and reload the
phpgacl/admin/acl_admin.php page to ensure it still works.

3. Erase the adodb directory installed with phpGACL.

Reusing an already existing Smarty installation

If you already have ADOdb installed you can get phpGACL to use this copy of ADOdb.

1. Edit phpgacl/admin/gacl_admin.inc.php so that the variables $smarty_dir and
$smarty_compile_dir reflect the location of the Smarty library in your path and the
template_c directory you already use.

Move the templates directory that came with phpGACL to another directory (e.g. one level
up). Adjust the $smarty_template_dir so it points to the new location. If you like you can
move those templates to your existing templates folder, of course.

2. Rename the phpgacl/smarty folder to something else like smarty_x and reload the
phpgacl/admin/acl_admin.php page to ensure it still works.

3. Erase the smarty directory installed with phpGACL.

How do I move the phpGACL files out of my website tree while leaving a link in the
tree for administration?

1. Go to your website root.

2. Move the phpGACL directory to your includes directory and create a symlink to the admin
directory where you want the admin tool to go. For example:

mv phpgacl/ /www/includes_directory
ln -s /www/includes_directory/phpgacl/admin/ gacl

3. Now surfing to http://yoursite.net/gacl/acl_admin.php will take you to the admin page. If it
doesn't work, make sure your Webserver allows symbolic links in the website tree.

Using phpGACL in your application

Basic usage
This example shows a basic example of using phpGACL in your code. It uses the ADOdb
abstraction layer as well, and shows a simple way to validate a login attempt against a
database.

// include basic ACL api
include('phpgacl/gacl.class.php');
$gacl = new gacl();

$username = $db->quote($_POST['username']);
$password = $db->quote(md5($_POST['password']));
$sql = 'SELECT name FROM users WHERE name=';
$sql .= $username.' AND password='.$password;
$row = $db->GetRow($sql);

if($gacl->acl_check('system','login','user',$row['name'])){
 $_SESSION['username'] = $row['name'];
 return true;
}
else
 return false;

As you can see there is only one call to acl_check() in this code. What does it do? Well, it

� checks the ARO object $row['name'] from the ARO section 'user'

� against the ACO object 'login' from the ACO section 'system'.

Advanced usage

Using the ACL admin utility
If you want to get a grip on the included ACL admin utitlity, it will help you a lot to import the
demonstration data into the database. You find a MySQL dump in the file
phpgacl/admin/mysql_db_demo_data.sql. It contains some ACO, ARO and AXO objects, as
well as some ACL defined using those objects. After importing the dump, calling the ACL
admin and going to the ACL list should show this:

Play around with it, and if you get stuck, come back and read on...

(yet to be written)

API Reference

ACL
add_acl()

Adds permissions to the access control list.

add_acl (

array ACO IDs,

array ARO_IDs,

array ARO_GROUP_IDs,

array AXO_IDs,

array AXO_GROUP_IDs,

bool ALLOW,

bool ENABLED

[, int ACL_ID])

Returns:

int ACL_ID on success, FALSE on failure.

edit_acl()

Edits permissions already set in the access control list.

edit_acl (

array ACO IDs,

array ARO_IDs,

array ARO_GROUP_IDs,

array AXO_IDs,

array AXO_GROUP_IDs,

bool ALLOW,

bool ENABLED

[, int ACL_ID])

Returns:

int ACL_ID on success, FALSE on failure.

del_acl()

Deletes permissions already set in the access control list.

del_acl (

int ACL ID)

Returns:

TRUE on success, FALSE on failure.

Groups
get_group_id()

Gets a group ID.

get_group_id (

string GROUP NAME) The Access Object type ("aco", "aro" or "axo").

Returns:

int GROUP_ID on success, FALSE on failure.

get_group_parent_id()

Gets a groups immediate parent ID.

get_group_parent_id (

int GROUP_ID)

Returns:

int GROUP_PARENT_ID on success, FALSE on failure.

add_group()

Adds a group to the group tree.

add_group (

string NAME

[, int GROUP_PARENT_ID])

Returns:

int GROUP_ID on success, FALSE on failure.

get_group_objects()

Gets all objects assigned to a group.

get_group_aro (

int GROUP_ID,

string GROUP_TYPE)

Returns:

array SECTION_VALUE, VALUE on success, FALSE on failure.

add_group_object()

Assigns an ARO to a group.

add_group_aro (

int GROUP_ID,

string OBJECT_SECTION_VALUE,

string OBJECT_VALUE,

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

int TRUE on success, FALSE on failure.

del_group_object()

Removes an ARO from a group.

del_group_aro (

int GROUP_ID,

string OBJECT_SECTION_VALUE,

string OBJECT_VALUE,

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

int TRUE on success, FALSE on failure.

edit_group()

Edits a group.

edit_group (

int GROUP_ID,

string NAME,

int GROUP_PARENT_ID,

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

int TRUE on success, FALSE on failure.

del_group()

Deletes a group, re-parenting or deleting children if specified.

del_group (

int GROUP_ID,

bool REPARENT_CHILDREN,

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

int TRUE on success, FALSE on failure.

Access Objects (ARO/ACO/AXO)
This section of the API manages Access Objects like AROs, ACOs and AXOs.

get_object()

Returns an array containing information about all Access Objects of a specified type.

get_object (

[string SECTION_VALUE], Optional. A Section name to filter on.

bool RETURN_HIDDEN, Whether to return Objects which have their Hidden
attribute set.

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

array OBJECT_ID on success, FALSE on failure.

get_object_data()

Returns an array containing information about a specific Access Objects, given it's Object ID.

get_object_data (

int OBJECT_ID,

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

array (section_value, value, order_value, name) on success, FALSE on failure.

get_object_id()

Gets an object ID.

get_object_id (

string OBJECT_SECTION_VALUE,

string OBJECT_VALUE,

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

int OBJECT_ID on success, FALSE on failure.

get_object_section_value()

Gets an object section ID.

get_object_section_value (

int OBJECT_ID,

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

int SECTION_VALUE on success, FALSE on failure.

add_object()

Adds an object.

add_object (

string SECTION_VALUE,

string NAME,

string VALUE,

int ORDER,

bool HIDDEN,

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

array OBJECT_ID on success, FALSE on failure.

edit_object()

Edits an object.

edit_object (

string SECTION_VALUE,

string NAME,

string VALUE,

int ORDER,

bool HIDDEN,

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

array OBJECT_ID on success, FALSE on failure.

del_object()

Deletes an object.

del_object (

int OBJECT_ID,

string GROUP_TYPE, The Access Object type ("aco", "aro" or "axo").

bool ERASE)

Returns:

int TRUE on success, FALSE on failure.

Access Object Sections
This part of the API manages the Sections that comprise part of the unique name of an
Access Object. See "Sections" for more information.

get_object_section_section_id()

Returns the ID of an existing Section. You must specify either the Section's name, value, or
both.

If only the name is specified, there may be multiple results (since the NAME does not have to
be unique). In this case, an error is returned.

get_object_section_section_id (

string NAME, A short description of what this Section is for. (e.g. "Levels in
building").

string VALUE, The name of the Section (e.g. "Floor").

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

int SECTION_ID on success, FALSE on failure.

add_object_section

Adds a new object Section.

string NAME, A short description of what this Section is for. (e.g. "Levels in
building").

string VALUE, The name of the Section (e.g. "Floor").

int ORDER, An arbitrary value which affects the order this Section appears in the
UI. Items will be displayed from lowest to highest.

bool HIDDEN, Whether this should appear in the UI or not (TRUE means that is will
be hidden).

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

int SECTION_ID on success, FALSE on failure.

edit_object_section()

Changes the attributes of a Section. It is not possible to change the Access Object type of a
Section. For more information on each field, see add_object_section.

edit_object_section (

int OBJECT_SECTION_ID, The Section ID (you can obtain this using the
get_object_section_section_id function)

string NAME, The new Section name.

string VALUE, The new Section value.

int ORDER, The new Section order.

bool HIDDEN, The state of the hidden attribute.

string GROUP_TYPE) The Access Object type ("aco", "aro" or "axo").

Returns:

TRUE on success, FALSE on failure.

del_object_section()

Deletes a Section. All Access Objects associated with this Section will also be erased!

del_object_section (

int SECTION_ID, The Section ID of the Section.

string GROUP_TYPE, The Access Object type ("aco", "aro" or "axo").

bool ERASE) If this is TRUE, then all Access Objects associated with this Section
will be erased along with the Section itself. If it is
FALSE, then a error will be returned if the Section
still has Access Objects associated with it, otherwise
the Section will be erased.

Returns:

TRUE on success, FALSE on failure.

FAQ

